Physiological and Isotopic Aspects of Photosynthesis in *Peperomia*

IRWIN P. TING*, LORETTA BATES, LEOONL O'REILLY STERNBERG, AND MICHAEL J. DENIRO

Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (I.P.T., L.B.); and Department of Earth and Space Sciences (L.O.S., M.J.D.) and Archaeology Program (M.J.D.), University of California, Los Angeles, California 90024

ABSTRACT

Physiological and isotopic aspects of several *Peperomia* species were investigated. All but one species had C3-like stomatal behavior, in that stomata were open during the day and closed during the night. In these species, most atmospheric CO2 uptake occurred during the day. Concurrent with this stomatal behavior, there were Crassulacean acid metabolism-like acid fluctuations in most species. Carbon and hydrogen isotope ratios of cellulose nitrate from *Peperomia* reflect their physiological behavior. The δ13C values of cellulose nitrate from *Peperomia* species were similar to values observed in C3 plants and consistent with the daytime uptake of exogenous CO2 via the C3 photosynthetic pathway. The δD values of cellulose nitrate from *Peperomia* species approach those of Crassulacean acid metabolism plants. These elevated δD values are caused by fractionations occurring during biochemical reactions and not as a consequence of water relations.

The phenomenon of CAM is now fairly well understood (12, 26). In typical CAM, gas exchange occurs predominantly at night when stomata are open. Carbon dioxide is taken up at night by carboxylation of PEP*, catalyzed by the enzyme PEP carboxylase, to form the first product, oxalacetate. Oxalacetate is rapidly reduced to malic acid, which accumulates in vacuoles. During the subsequent light period, malic acid is decarboxylated, and the CO2 released into the tissue is assimilated through the C3 photosynthetic cycle. Because stomata are closed, internal CO2 concentration may increase to over 1% during the day (4). The ecological interpretation of CAM is that it represents a mechanism by which water is conserved, since most gas exchange takes place at night when evaporative demand is low (26).

A modification which has been known for approximately one decade, termed 'CAM-idling,' occurs when CAM plants are severely water-stressed and stomata close both day and night. In CAM-idling, there is a continual, but low-rate, cycling of organic acids through the CAM pathway (15, 17, 23, 27). Evidently, the low level of metabolism keeps the plant's biochemical activity poised until water is available (13, 15-17). Once water is available, the plants recover, usually within 24 h.

Recently, a modification of CAM, termed CAM-cycling, has been described (27). In CAM-cycling, gas exchange occurs largely during the daylight hours, typical of C3 plants, yet there is diurnal cycling of organic acids in the manner of CAM. CAM-cycling has been observed in *Pereskia* spp. (14), *Cissus quadrangularis* (28), *Welwitschia* (25), *Talinum* (9), the Bromeliaceae (10), and in some species of the Crassulaceae (24).

It is now well known that carbon isotope ratios (13C/12C) can distinguish C3 plants from C4 and CAM plants operating in the CAM mode (1). C3 plants have 13C/12C ratios lower than C4 and CAM plants. It has also been shown that hydrogen isotope ratios (D/H ratios) of cellulose nitrate from CAM plants are much higher than those from C3 and C4 plants (19-21). Furthermore, it has been shown that greenhouse-grown CAM-cycling plants have δD values approaching those of CAM plants, although their δ13C values are typical of C3 plants (21).

The purpose of this study was to investigate physiological and isotopic aspects of CAM-cycling as they exist in the genus *Peperomia*. There are at least 300 species of *Peperomia* native to tropical and subtropical regions (7). They are found in South America, in the islands of the Caribbean, southeastern United States, and islands of the Pacific including Hawaii. Most species are epiphytic and/or lithophytic. The leaf anatomy of these plants is very distinctive, showing an upper hypodermis (multiple epidermis) that may act as a water storage tissue, a median deep green palisade tissue of perhaps three cell layers, and a lower, lighter green, spongy palisade of many cell layers that has the physical appearance of CAM tissue (7).

MATERIALS AND METHODS

Plant Material. Isotopic analyses were performed on plants collected at La Selva, Costa Rica. Physiological measurements were conducted on living plants grown in a greenhouse in Riverside, CA. Plants collected at La Selva were propagated from cuttings and grown in the greenhouse. Plants purchased at nurseries or obtained from the University of California Botanic Garden at Berkeley were also grown in the greenhouse. The greenhouse had a mean annual high temperature of 28°C and a mean low of 22°C. Humidity was variable, but in the neighborhood of 40 to 50%. Plants were grown in full greenhouse sun or under shade, depending upon the species. Plants were watered frequently to avoid stress.

Gas Exchange Studies. Gas exchange parameters were determined with a dual-isotope porometer (6) on plants from the greenhouse. The porometer passes an air stream of dry 14CO2 (200 μL L-1) in N2:O2 mixture of 80:20) through THO of known specific radioactivity. Abaxial leaf surfaces were exposed in triplicate to the radioactive gases for 20 s via a small chamber clamped onto the leaves. The resistance to water vapor transfer and CO2 uptake (cm s-1) were derived from THO vapor uptake and 14CO2 uptake data that were determined by liquid scintillation counting. Values for conductances (cm s-1 transpiration...
rates (g water loss dm\(^{-2}\) h\(^{-1}\)), and CO\(_2\) uptake rates (mg CO\(_2\) dm\(^{-2}\) h\(^{-1}\)) were also calculated from the gas exchange data.

Acid Titrations. Leaf samples from greenhouse plants were collected, frozen with dry ice, and stored in a freezer until assayed. Individual samples were weighed, ground in glass-distilled H\(_2\)O with a motorized Teflon tissue homogenizer, and titrated to a pH 7.0 endpoint with 0.01 N KOH. Data are expressed as ueq acid g\(^{-1}\) FW or as ueq acid cm\(^{-2}\).

Isotope Analyses. Samples of plant material for isotopic analyses were dried in an oven at 50°C, further desiccated in a freeze dryer, and ground to a fine powder in a Wiley mill. cellulose was extracted as previously described (11). Cellulose oxygen isotope ratios were determined by the method of Rittenberg and Ponti-corvo (18) as modified by Burk (3). Carbon and hydrogen isotope ratios of cellulose nitrate prepared from cellulose (11) were determined by a modified version of the Stump and Frazer method (11, 22). Isotope ratios are expressed as \(\delta\) values, where

\[\delta = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000\% \]

and \(R\) represents \(^{18}\text{O}/^{16}\text{O}\) for \(\delta^{18}\text{O}\) values, D/H for \(\delta\text{D}\) values, and \(^{13}\text{C}/^{12}\text{C}\) for \(\delta^{13}\text{C}\) values. The standards are standard mean ocean water for \(\delta^{18}\text{O}\) and \(\delta\text{D}\) values and the belemnite from the PeeDee formation of South Carolina carbonate for \(\delta^{13}\text{C}\) values. The precision of the isotopic analyses of cellulose and cellulose nitrate were \(\pm 2\,^\circ\text{o}o\) for \(\delta\text{D}\) values, \(\pm 0.05/\text{o}o\) for \(\delta^{18}\text{O}\) values, and \(\pm 0.2/\text{o}o\) for \(\delta^{13}\text{C}\) values.

RESULTS AND DISCUSSION

Peperomia scandens is one of the most CAM-like *Peperomia* species that we have tested (Fig. 1). There is a marked diurnal fluctuation of organic acids identical to that of CAM plants. CO\(_2\) fixation shows a definite early morning burst comparable to CAM plants (12), a depression during the day, followed by an increase toward the end of the light period. There is substantial CO\(_2\) fixation at night in comparison to the light period. Also shown in Figure 1 are data for *Peperomia obtusifolia*, one of the least CAM-like of the *Peperomia* species that we have studied. For this species, there is little evidence of dark CO\(_2\) fixation or dark stomatal conductance, even though organic acids tended to be high. We have, however, observed diurnal acid fluctuation for this species previously (6).

Figure 2 shows gas exchange properties for four species of *Peperomia* collected at La Selva and grown in the greenhouse at Riverside. For the most part, CO\(_2\) uptake is typical of CAM plants, occurring largely during the day. However, in all cases, there appears to be some exogenous CO\(_2\) fixation at night, although rates are rather low. Observations of stomatal conductance expressed in cm s\(^{-1}\) are consistent with CO\(_2\) uptake patterns. Care must be taken in interpretation of the CO\(_2\) fixation data presented here because they were obtained with \(^{14}\text{CO}_2\) and, thus, net CO\(_2\) fixation was not measured. It is highly likely and indeed probable that the small amount of CO\(_2\) fixation at night, sometimes reaching about 1 mg dm\(^{-2}\) h\(^{-1}\), is less than the amount of CO\(_2\) lost through respiration. Nevertheless, there appears to be substantial dark CO\(_2\) fixation, since there is a definite, but small, diurnal fluctuation of organic acids similar to that observed in CAM plants, with levels of organic acids reaching values as high as 50 ueq g\(^{-1}\) FW.

We do not have sufficient data to calculate the contribution to acid synthesis by dark CO\(_2\) fixation. However, for *Peperomia sp. nov.*, there was no apparent CO\(_2\) uptake at night, yet an organic acid fluctuation of about 15 ueq g\(^{-1}\) FW was measured. Thus, in this species, dark CO\(_2\) fixation seems insufficient to account for acid synthesis.

In summary, the gas exchange and acid flux data (Figs. 1 and

Table 1. Carbon and Hydrogen Isotopic Compositions from Selected Peperomia spp.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>(\delta^{13}\text{C} \text{‰})</th>
<th>(\delta\text{D} \text{‰})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. alata (form b)(^a)</td>
<td>CR</td>
<td>-29.4</td>
<td>+31</td>
</tr>
<tr>
<td>P. serpens</td>
<td>CR</td>
<td>-33.8</td>
<td>+13</td>
</tr>
<tr>
<td>P. panamensis</td>
<td>CR</td>
<td>-31.6</td>
<td>+18</td>
</tr>
<tr>
<td>P. macrostachys</td>
<td>CR</td>
<td>-28.5</td>
<td>-5</td>
</tr>
<tr>
<td>P. rotundifolia (form a)(^a)</td>
<td>CR</td>
<td>-27.6</td>
<td>-9</td>
</tr>
<tr>
<td>P. sp. nov.(^a)</td>
<td>CR</td>
<td>-30.5</td>
<td>+5</td>
</tr>
<tr>
<td>P. alata (form a)(^a)</td>
<td>CR</td>
<td>-24.7</td>
<td>+9</td>
</tr>
<tr>
<td>P. rotundifolia (form b)(^a)</td>
<td>CR</td>
<td>-29.2</td>
<td>-0</td>
</tr>
<tr>
<td>P. globella</td>
<td>CR</td>
<td>-31.0</td>
<td>-2</td>
</tr>
<tr>
<td>P. oerstedii</td>
<td>CR</td>
<td>-28.4</td>
<td>-19</td>
</tr>
<tr>
<td>P. orba</td>
<td>UCR</td>
<td>-29.5</td>
<td>-14</td>
</tr>
<tr>
<td>P. petiolaris</td>
<td>UCR</td>
<td>-25.5</td>
<td>-12</td>
</tr>
<tr>
<td>P. obtusifolia</td>
<td>UCR</td>
<td>-24.9</td>
<td>-14</td>
</tr>
<tr>
<td>P. camptotricha</td>
<td>UCR</td>
<td>-27.4</td>
<td>+24</td>
</tr>
<tr>
<td>P. scandens</td>
<td>UCR</td>
<td>-22.4</td>
<td>+14</td>
</tr>
</tbody>
</table>

*CR, Costa Rica; UCR, University of California at Riverside.\(^a\) There are two different morphological forms of *P. alata* and *P. rotundifolia*; form a for both species is the form used in physiological experiments reported here.\(^a\) This species of *Peperomia* could not be identified.\(^a\) Previously reported (21).
CAM-cycling, carbon metabolism with leaf samples of crassifolia shows values of C4 is enriched in SMOW, formation of the family Gesneriaceae. In CAM-cycling, we assume that all CO₂ fixed by the CAM pathway at night (when stomata are closed) is the result of fixation of respiratory CO₂. This respiratory CO₂, coming from carbohydrates synthesized by C₃ photosynthesis, would have δ¹³C values which reflect C₃ photosynthesis. Thus, these plants have δ¹³C values similar to those of C₃ plants, and not of CAM plants.

The deuterium enrichment we observed in CAM-cycling Peperomia spp. could be caused by isotopic fractionations occurring during H₂O metabolism. Briefly, the enrichment would occur if the leaf water in these plants becomes enriched in deuterium during evapotranspiration and if this H₂O then labels the organically bound hydrogen. If this hypothesis is true, cellulose from CAM-cycling plants should also be enriched in δD relative to C₃ and C₄ plants, since evapotranspiration enriches leaf water in both D and δD (2, 5). Measurement of oxygen isotope ratios for the field-grown Costa Rican sample set shows no such oxygen enrichment in CAM-cycling plants (Fig. 3b). In fact, in plants with the various photosynthetic modes, all have similar oxygen isotope ratios. Thus, we conclude that elevated δD values of cellulose nitrate from CAM-cycling plants, like those in CAM plants (19, 20), are due to fractionations occurring during biochemical reactions, perhaps those associated with acid fluctuation.

The contribution of the CAM-cycling phenomenon to the physiology and/or ecology of a plant is not apparent at this time. Peperomia species in their natural environment, being mostly epiphytic, are subjected to frequent periods of drought. Root systems are underdeveloped and thus the plants tend to be hydrated only during and immediately after precipitation. Plants, particularly those species that grow in partial or full sun, become water stressed soon after a precipitation event. We suspect that the CAM-cycling phenomenon is similar to the CAM-idling phenomenon, in which there is organic acid recycling during severe drought when stomata are closed day and night (15, 16). We suggest that drought occurring between precipitation episodes is accompanied by stomatal closure in CAM-cycling plants. If organic acid cycling continues, the plants would be in the CAM-idling phase and, thus, metabolically poised to resume full photosynthetic activity when water is available. Further investigations are being conducted to ascertain these aspects of CAM-cycling.

Acknowledgments—We thank Henry Ajie, Janet Hann, and David Winter for technical assistance; Barry Hammel, Duke University, for assistance in identifying Peperomia species; and the Organization for Tropical Studies, Inc., at La Selva, Costa Rica, for their assistance.
LITERATURE CITED

1. BENDER MM 1971 Variation in 14C/12C ratios of plants in relation to the
pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:
1239-1244
2. BICKLEY J 1973 Fruit and fruit products—control of authenticity of fruit juices
by isotopic analysis. J Assoc Anal Chem 56: 739-742
University of Washington, Seattle
4. COCKBURN W, IP TING, L.O. STERNBERG 1979 Relationships between stomatal
behavior and internal carbon dioxide concentration in Crassulacean acid
metabolism plants. Plant Physiol 63: 1029-1032
5. EPSTEIN S, J P. THOMPSON, CJ YAPP 1977 Oxygen and hydrogen isotopic ratios
in plant cellulose. Science 198: 1206-1209
Physiol 61: 327-330
7. KAUL RA 1977 The roles of the multiple epidermis in foliar succulence of
Peperomia (Piperaceae). Bot Gaz 138: 213-218
8. MARTIN CE, AE LUBBERS, JA TEERI 1982 Variability in Crassulacean acid
metabolism: a survey of North Carolina succulent species. Bot Gaz 143:
491-497
9. MARTIN CE, AK ZEE 1983 C3 photosynthesis and Crassulacean acid metabo-
lism in a Kansas rock outcrop succulent. Talinum calycinum Engeln. (Por-
tulaceae). Plant Physiol 73: 718-723
10. MEDINA E 1974 Dark CO2 fixation, habitat preference and evolution within
the Bromeliaceae. Evolution 28: 677-686
11. NORTHFELT D, MJ DE NIRO, S EPSTEIN 1981 Hydrogen and carbon isotopic
ratios of cellulose nitrate and saponifiable lipid fractions prepared from
annual growth rings of California redwood. Geochim Cosmochim Acta 45:
1895-1909
12. OSMONDO CB 1978 Crassulacean acid metabolism: a curiosity in context. Annu
Rev Plant Physiol 29: 379-414
13. OSMONDO CB 1982 Carbon cycling and stability of the photosynthetic apparatus
in CAM. In IP TING, M Gibbs, eds, Crassulacean Acid Metabolism. American
Society of Plant Physiologists, Rockville, MD, pp 112-127
(Cactaceae). Plant Physiol 68: 139-142
15. RAYDER L, IP TING 1983 Shifts in the carbon metabolism of Xerosicyos
danguyi H. Humb. (Cucurbitaceae) brought about by water stress I. General
characteristics. Plant Physiol 72: 606-610
16. RAYDER L, IP TING 1983 Shifts in the carbon metabolism of Xerosicyos
danguyi H. Humb. (Cucurbitaceae) brought about by water stress II. Enzy-
mology. Plant Physiol 72: 611-615
Photosynth Res 4: 203-211
18. RITTENBERG D, L. PONTICELLO 1956 A method of determination of the 18O
concentrations of the oxygen of organic compounds. J Appl Radioactive
Isotopes 1: 208-214
19. STERNBERG L, MJ DE NIRO 1983 Isotopic composition of cellulose from C3,
C4, and CAM plants growing in the vicinity of one another. Science: 947-949
20. STERNBERG L, MJ DE NIRO, HB JOHNSON 1984 Isotope ratios of cellulose from
plants having different photosynthetic pathways. Plant Physiol 74: 557-561
21. STERNBERG L, MJ DE NIRO, IP TING 1984 Carbon, hydrogen, and oxygen
isotope ratios of cellulose from plants having intermediary photosynthetic
modes. Plant Physiol 74: 104-107
22. STUMP RR, JW FRAZER 1971 Simultaneous determination of carbon, hydro-
gen, and nitrogen in organic compounds. Nucl Sci Abstr 28: 746
23. SZAREK RK, HB JOHNSON, IP TING 1973 Drought adaptation in Opuntia
basilaris. Plant Physiol 52: 539-541
24. TEERI J 1982 Photosynthetic variation in the Crassulaceae. In IP TING, M
Gibbs, eds, Crassulacean Acid Metabolism. American Society of Plant Physi-
ologists, Rockville, MD, pp 244-259
Sci Lett 32: 279-285
26. TING IP, MJ DE NIRO 1982 Crassulacean Acid Metabolism. American Society
of Plant Physiologists, Rockville, MD, p 316
27. TING IP, L. RAYDER 1982 Regulation of C3 to CAM shifts. In IP TING, M
Gibbs, eds, Crassulacean Acid Metabolism. American Society of Plant Physi-
ologists, Rockville, MD, pp 193-207
28. TING IP, L STERNBERG, MJ DE NIRO 1983 Variable photosynthetic metabolism