Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna

Davi Rodrigo Rossatto a, d, *, Lucas de Carvalho Ramos Silva b, Randoll Villalobos-Vega c, Leonel da Silveira Lobo Sternberg c, Augusto César Franco d

A P R I N C E I N F O

Article history:
Received 29 December 2010
Received in revised form
20 November 2011
Accepted 29 November 2011

Keywords:
Savanna
Stable isotopes
Topographic gradient
Vegetation structure
Water uptake

A B S T R A C T

Vegetation structure of the savannas is variable across the landscape, ranging from open grassland to savanna woodland within topographic gradients of a few hundred meters in length. Here we investigated whether patterns of soil water extraction by the woody layer and vegetation structure changed in response to groundwater depth. We determined depth of plant water uptake, groundwater level and vegetation structure on five different locations along a topographic gradient in the highlands of Central Brazil. The elevation gradient of about 110 m covered all vegetation physiognomies generally associated with topographic gradients in savannas of Central Brazil. To estimate the depth of plant water uptake in the different slope positions we relied on comparisons of hydrogen and oxygen isotope ratios of plant stem water, water from different soil depths, from groundwater and from rainfall. We subsequently used a stable isotope mixing model to estimate vertical partitioning of soil water by woody plants along the elevation gradient. We were able to show that groundwater level affected plant water uptake patterns and soil water partitioning among savanna woody species. Vegetation at higher elevation extracted water from deeper unsaturated soils and had greater variability in water uptake strategies, which was coupled to a denser and more complex woody layer. Plants on these soils used stored water from both shallow (<0.6 m) and deep (0.6–2.00 m) soil layers. At lower elevation sites, however, the presence of a water table near the soil surface restricted water uptake to the shallower wet season unsaturated zone of the soil profile. The sparser woody vegetation is probably composed of species that only rely on superficial water uptake, or are plastic in relation to root characteristics.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Tropical savannas consist of dynamic mixtures of trees and grasses that result in a mosaic of different physiognomic forms across the landscape. As such, tropical savannas are characterized by great variation in resource availability at global, regional and local scales (Bourliere, 1983; Sarmiento, 1983; Gottsberger and Silberbauer-Gottsberger, 2006). Soil properties and especially soil water regimes play an important role on regulating the composition of species and their functional aspects (Bourliere, 1983; Franco, 2002; Sankaran et al., 2005; Haridasan, 2008). A special case of vegetation variation occurs on topographic gradients in savannas of Africa, Australia and South America (Furley et al., 1992; Ratter et al., 1997). In these savannas vegetation structure and species composition vary heavily across the landscape, ranging from open grassland to savanna woodland and forest sometimes within distances of a few hundred meters (Furley, 1996; Oliveira-Filho and Ratter, 2002).

Variations in vegetation structure are frequently related to changes in topography in savannas of Central Brazil, locally known as “cerrado”, the second most extensive plant formation in South America (Eiten, 1972; Furley, 1996). In the upper portion of the topographic gradient over deep oxisols, woody savannas (locally called cerrado sensu stricto) are usually the dominant vegetation (Silberbauer-Gottsberger and Eiten, 1987). Tree density decreases and soils become shallower towards lower elevations while the groundwater approaches the surface. Open shrubby savanna formations (campo cerrado) and vegetation with a few very low trees (open shrubby grasslands, regionally called campo sujo) become more common and eventually wet grasslands can be found at lower elevations on seasonally waterlogged soils (Eiten, 1972; Silberbauer-Gottsberger and Eiten, 1987; Furley, 1999).
2. Methods

2.1. Study area and species selection

The study was conducted at the IBGE Ecological Reserve, located 33 km south of Brasilia in Brazil (15° 56′ S, 47° 53′ W) with an average altitude of 1100 m. The average annual precipitation is approximately 1500 mm with a pronounced dry season from May through September. Mean monthly temperature ranges from 19 to 23 °C. The predominant soils at the study site are deep well drained Oxisols, but Cambisols and Hydromorphic soils also occur associated with hill slopes and valley bottoms respectively.

We employed a transect of 1500 m spanning an elevation gradient of about 110 m, covering all vegetation physiognomies generally associated with topographical gradients in the cerrado region. We subdivided the transect in 5 segments following the changes in vegetation physiognomies from the highest to the lowest elevation. The two first segments of the transect (A and B) supported typical savanna vegetation, locally known as cerrado sensu stricto. Segments C and D were covered by a more open shrubby savanna, known as campo cerrado, while segment E was covered by a very open (near treeless) physiognomy, known as campo sujo. In each of these segments we measured tree diameter and height, tree density and basal area. This was done in four 4 × 4 m (16 m²) plots per segment. We surveyed all woody species with a minimum stem diameter of 2 cm at 30 cm above ground level, but only 10–14 mature individuals (>6 cm in diameter) were sampled at each topographical location (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Vegetation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anocaroidium humile A.St.-Hil.</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Allagoptera campesiris (Mart.) Kuntze</td>
<td>E</td>
</tr>
<tr>
<td>Bauhinia pulchella Benth.</td>
<td>D, E</td>
</tr>
<tr>
<td>Byrsonima crassifolia Benth.</td>
<td>A, B, D, E</td>
</tr>
<tr>
<td>Calliandra dysantha Benth.</td>
<td>D</td>
</tr>
<tr>
<td>Dalbergia micrololium Benth.</td>
<td>A, C, E</td>
</tr>
<tr>
<td>Gaussia rioa (Netto) Lund.</td>
<td>A, D</td>
</tr>
<tr>
<td>Hymenaea stigonocarpa Mart. ex Hayne</td>
<td>A, B</td>
</tr>
<tr>
<td>Kielmeyera coriacea Mart.</td>
<td>D, E</td>
</tr>
<tr>
<td>Miconia ferruginita DC.</td>
<td>A, D</td>
</tr>
<tr>
<td>Ouratea hexasperma (A.St. Hil.) Baily.</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Palicourea rigida Kunth</td>
<td>A, B</td>
</tr>
<tr>
<td>Qualea grandiflora Mart.</td>
<td>E</td>
</tr>
<tr>
<td>Roupaia montana Aubl.</td>
<td>D, E</td>
</tr>
<tr>
<td>Schefflera macrocarpa (Cham. & Schltdl.) Frodin</td>
<td>C, E</td>
</tr>
<tr>
<td>Schlerolobium paniculatum Vog</td>
<td>A, B</td>
</tr>
<tr>
<td>Stryphnodendron adstringens (Mart.) Coville</td>
<td>A, B, C, D, E</td>
</tr>
<tr>
<td>Stylos ferrugineus Nees. & Mart.</td>
<td>D</td>
</tr>
<tr>
<td>Syagrus comosa (Mart.) Becc.</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Syagrus flexuosa (Mart.) Becc.</td>
<td>A, D, C</td>
</tr>
<tr>
<td>Symplocos rhaminifolia A.D.C.</td>
<td>A, B, C, D</td>
</tr>
</tbody>
</table>

In this study we tested two hypotheses: First, since woody savanna species are intolerant of high soil moisture and flooding (Joly and Crawford, 1982), we hypothesized that at lower elevations of the topographic gradient, where the wet season groundwater level is high, plant water uptake is restricted to the surface layers of the soil profile. Second, we asked whether an increase in the contribution of plant water extraction from deeper unsaturated soils at higher elevation is related to an increase in the complexity of woody vegetation. To estimate the depth of plant water uptake we relied on comparisons of hydrogen and oxygen isotope ratios of plant stem water, soil pore water collected at different depths and from groundwater (Dawson et al., 2002). These data were used as input to a stable isotope mixing model (Phillips and Gregg, 2003) to estimate vertical partitioning of soil water extraction by woody plants along the topographical gradient.
container. Samples were collected from adult individuals in a sunny day in 18th November 2007 during the wet season, after a period of two weeks without rainfall. Collection of data was made only in wet season as the minimum distance between soil surface and water table depth (achieved on wet season) appears to be the major environmental factor that accounted for changes in tree density and in tree radial growth along the topographic gradient (Villalobos-Vega, 2010). Soil samples were also collected at each of the five sampling areas to determine variations in δ²H and δ¹⁸O across different depths of the soil profile. Soils were collected in intervals of 20 cm down to 2 m depth or until the groundwater was reached. Variations in the groundwater level at the five study sites along the topographic gradient were monitored by automated submersible pressure sensors (Solinst – Levelogger, Model 3001 F30/M10) installed in wells (depth of about 1–12 m, depending on the level of the water table). Groundwater samples were also collected from those wells. Rainfall was collected monthly between October 2007 (previous to this study) and November 2009 with rain collectors installed in open sites near the study site at the IBGE reserve. The collectors consisted of a funnel attached to a bottle having a mineral oil layer approximately 1 cm thick to prevent evaporation.

The water extraction from plant stems and soils was conducted at the Plant Physiology Laboratory of the University of Brasilia, and followed the methodology described by Vendramini and Sternberg (2007). Water obtained from the wells (groundwater) and extracted from the soil and stem samples were sealed in glass tubes and sent to the Laboratory of Stable Isotope Ecology in Tropical Ecosystems (Department of Biology, University of Miami, Miami, Florida). Water samples were analyzed in a Multiflow system connected to an Isoprime mass spectrometer (Elementar, Hanau, Germany). Oxygen and hydrogen isotope ratios are reported here as δ¹⁸O and δ²H values respectively and calculated as:

\[
\delta^{18}O = \left(\frac{R_{\text{sample}}}{R_{\text{SMOW}}} - 1 \right) \times 1000
\]

where \(R_{\text{sample}}\) and \(R_{\text{SMOW}}\) represents the heavy to light isotope ratio of the sample and the standard respectively. The standard for water isotope ratios used here was Vienna standard mean ocean water (SMOW) and the precision of the analysis was ±0.1‰ and ±2.0‰ for oxygen and hydrogen isotopes respectively (Saha et al., 2009).

We calculated the average frequency of water uptake for each studied location, using δ²H and δ¹⁸O stem signatures of each collected species. For this we used the software IsoSource Version 1.3 (Phillips and Gregg, 2003). The obtained values were averaged and the mean frequency taken as the frequency of water uptake by the vegetation at each selected location along the transect. To make a distinction between shallow and deep soils we considered shallow soils to be the region in the soil profile above 60 cm (Dawson et al., 2002). We assumed here that the bulk of plant water uptake during the wet season occurred within the range of depth where soil water was collected and analyzed for hydrogen and oxygen isotope ratios (0–2 m).

2.3. Statistical analysis

Differences in plant stem isotope water signature (δ²H and δ¹⁸O), frequency of water uptake on shallow soils and phytosociological parameters were verified through an ANOVA followed by Tukey’s test (α = 0.05). All data presented normality (P > 0.45 according to the Kolmogorov–Smirnov test) and homogeneity of variances, according to the Levene’s test (F₁,₅₅ = 1.24, P = 0.29). Linear regression was used to test for relationships between groundwater depth during the wet season (measured on the same day of plant sampling for isotope analysis) and the frequency of water uptake on shallow soils. A linear regression was performed to test if the fraction of water uptake on deep soils was related to plant height, basal area and other phytosociological parameters of the vegetation. All the analysis were made using STATISTICA 7.0 package. Differences between stem water, rainfall and soils in the δ¹⁸O and δ²H relationship were tested with the SMATR software (Warton et al., 2006).

3. Results

3.1. Rainfall, soil and groundwater isotopic composition

A plot of the δ²H versus the δ¹⁸O values of rainfall water (Fig. 1A) fell in a line with a slope of 8.3 and an intercept of 6.33, and not significantly different from the global meteoric water line (GMWL, δ²H=8δ¹⁸O+10, Wald Statistic = 0.03, P = 0.95). The δ²H and δ¹⁸O values of wet season soil water also fell very near the global meteoric water line, showing no significant difference to the slope of the GMWL (Y = 6.107x + 3.48, \(r^2 = 0.88 \), P < 0.05, Wald Statistic = 0.70, P = 0.67).

Although isotope ratios fell in a line with a similar slope as the GMWL during the wet season, there was a significant variation within soil profiles in the δ²H and δ¹⁸O signatures for the different locations along the transect (Fig. 2). In all cases, water from
the superficial layers of the soil profile was isotopically enriched compared to the deeper layers, whose soil water δ^2H and δ^{18}O values tended to be similar to the groundwater signature (Fig. 2). Soils from upper slope elevations had the most pronounced variations in isotopic composition, while oxygen and hydrogen isotopic composition along the soil profile at lower sampling sites (locations D and E in Fig. 2), rapidly approached values measured for the groundwater (Fig. 2).

The δ^{18}O values of groundwater at the lower positions on the transect were little more depleted (between -4.4 and -4.8%) compared with those at higher elevations along the transect (-3.5 and -3.7%), however this 1% difference may not be ecologically significant, as in soil water, the δ^{18}O and δ^2H of the groundwater samples also fell close to the GMWL (Fig. 1A). Groundwater depth along the topographic gradient varied between 7.00 ± 0.03 m (higher elevations) and 1.00 ± 0.11 m (lower elevations) (Fig. 2). Groundwater depth pronouncedly increased during the dry season, being as much as 3.00 ± 0.93 m deeper at each sampling location (Fig. 2).

3.2. Isotopic composition of stem water

As in rainwater, soil water and groundwater, δ^2H and δ^{18}O values of plant stems also fell close to the meteoric water line ($Y = 7.130 + 1.24, r^2 = 0.91, P < 0.05$, Wald Statistic = 0.04, $P = 0.89$). However, there were significant differences in stem water isotopic composition among the woody species assemblages from different locations along the slope (Figs. 1B and 2) both in terms of δ^2H (ANOVA, $F_{5,65} = 9.16, P = 0.002$) and δ^{18}O (ANOVA, $F_{5,65} = 4.82, P = 0.001$). The range of stem water δ^2H and δ^{18}O values was greater for plants growing at higher elevation sites compared to those at lower elevation sites along the transect (Fig. 1B).

Woody plants at higher elevations along the transect (segments A and B) had more negative (Tukey’s test <0.05) δ^2H and δ^{18}O values of stem water compared to those at lower elevations (segments C, D and E) along the transect (Figs. 1 and 2). Plants at lower elevations had stem water isotopic signatures indicating that they were mostly relying on superficial soils ($0.10–0.60$ m) for water uptake. This was corroborated by the frequency of water uptake from shallow soils estimated for the five different locations along the topographical gradient (Fig. 3). The woody community at higher elevation sites (sites A, B and C) acquired approximately 70–80% of their stem water from pore water from superficial soil layers. This was significantly less ($F_{5,65} = 9.90, P < 0.001$) than that utilized by plants at lower elevation sites (sites D and E), which used almost exclusively water from the superficial soil layers (90–100%). The clear relationship between groundwater depth in wet season...
and frequency of water uptake from shallow soils (Fig. 4, \(r^2 = 0.90, P < 0.013 \)) is a strong indication that groundwater depth plays an important role in defining the water uptake by woody plants during the wet season.

3.3. Water uptake patterns and vegetation structure along the topographic gradient

There were significant changes in woody vegetation properties along the studied transect (Fig. 5). Basal area \((F_{4,15} = 29.48, P < 0.001)\), stem density \((F_{4,15} = 6.59, P < 0.001)\), average plant height \((F_{4,15} = 16.36, P < 0.001)\) and average tree diameter \((F_{4,15} = 14.98, P < 0.001)\) differed along the topographic gradient (Fig. 5). Only few species occurred in all sites (Table 1) but the structural changes in the vegetation allowed a clear distinction of the phytosociologies associated with the topographic change. Sites at higher elevation had higher total basal area (Fig. 5A), plant density (Fig. 5B), height (Fig. 5C) and diameter (Fig. 5D) then those at lower elevations.

There was a clear and positive relationship (Fig. 6) between frequency of water uptake on deep soil and the vegetation properties of each segment \((r^2 > 0.84\) and \(P < 0.05\)). In this manner, an increase in the contribution of plant water extraction from deeper unsaturated soils at higher elevation is related to an increase in the complexity of woody vegetation.

4. Discussion

4.1. Soil patterns

Our results differ from several studies (Ewe et al., 2007; Querejeta et al., 2007; Saha et al., 2009) that reported an oxygen isotopic enrichment of water from surface layer of the soil profile due to evaporation. The relationship between \(\delta^2H\) and \(\delta^{18}O\) obtained from water extracted at different depths of the soil profiles fell within the meteoric rainfall line (Fig. 1A). This provides evidence that the rainfall events during the wet season are frequent enough to damp the expected evaporative isotopic enrichment of the superficial soil layers. On the other hand, even though \(\delta^2H\) and \(\delta^{18}O\) values of soil water fell close to the GMWL, the observed isotopic enrichment of soil water from the surface layers at all sites suggests evaporation under isotopic equilibrium with little kinetic effects (Clark and Fritz, 1997).

4.2. Plant water uptake patterns changes along the topographic gradient

Plants from higher slope positions of the transect, with a relatively deep water table (\(-7\) m depth) extracted significantly more water from deeper soil layers \((>0.60\) cm) than plants growing at lower slope positions, where water uptake tends to be restricted to the superficial soil layers (Fig. 3), as groundwater is very near the soil surface. The greater depth of unsaturated soil in the upper portion of the topographic gradient implies a much larger available soil volume for root growth than at lower portions of the gradient (Fig. 2).

We estimated that at least 30% of the water acquired by the woody community at the higher elevation sites of the transect originated from deeper layers of the soil profile (including groundwater) with the remaining water coming from superficial soil layers. These results are consistent with the presence of dimorphic root systems in many cerrado woody species, which enable them to extract water from superficial and deeper soil layers (Scholz et al., 2008a). Despite possible variation in root depth among individual species, our results are also consistent with reports that cerrado woody species at the community level have most of the fine roots in the first 0.5 m of the soil profile (Oliveira et al., 2005).

Woody species, therefore, appear to rely mostly on soil water from shallow soil layers for water balance, at least during the wet season, when rains are very frequent (Dodd et al., 1998; Verweij et al., 2011). Groundwater resources could be more important during the dry season, as in some Australian savannas where at least 50% of water used for transpiration in some species come from these deeper water resources during the dry season (Lamontagne et al., 2005). In fact, there are evidences that several cerrado woody species, at least in typical denser vegetation sites, rely on water sources from deeper regions of the soil profile (around 1.5–3 m) during the dry season (Goldstein et al., 2008), which suggests that there is a niche separation between woody plants and grasses in which the latter only use water from the upper soil layers, whereas trees can use water from both upper and deeper layers. This plasticity in water uptake patterns has been considered an important strategy to allow the co-existence of a diversified plant community in water-limited systems (Eggemeyer et al., 2008; Yang et al., 2011).
Fig. 5. Structural parameters of the woody vegetation at the five different locations along the topographic gradient. A: basal area; B: tree density; C: plant height and D: diameter. Values with different smallcase letters demonstrates differences according Tukey's test \((P < 0.05)\). Vertical bars indicate standard error of means. Locations: A and B: cerrado sensu stricto; C and D: campo cerrado and E: campo sujo.

Fig. 6. Relationships between frequency of water uptake from deep soil and vegetation parameters: A: average plant diameter (cm); B: average plant height; C: basal area \((m^2 \cdot ha^{-1})\) and D: plant density \((no. \cdot ha^{-1})\). Linear regression was applied. \(R^2\) and \(P\) values were shown. Vertical bars indicate standard error of the mean \((n = 4)\).
The results presented here suggest that woody plants at higher locations have a greater range in depth of soil water extraction allowing different species to coexist, which is in line with the frequently discussed “Walter’s two-layer hypothesis” (Walter, 1971). This hypothesis suggests that there is a niche separation between woody plants and grasses in which the latter only use water from the upper soil layers, whereas trees can use water from both upper and deeper layers of the soil profile (Walter, 1971; Schenk and Jackson, 2002). Cerrado woody species display a variety of root systems from shallow-rooted, dimorphic to deep-rooted (Rawitscher, 1948; Scholz et al., 2008a). The results of this community level study confirm this broad range of water extraction patterns in woody species, which are however, dependent on the depth of the water table.

While cerrado woody species are apparently able to successfully tap both superficial and deep water sources in unsaturated upperslope soils, the presence of a water table near the soil surface downslope affected water uptake patterns. These high levels of groundwater during the wet season can greatly constrain the establishment of woody plants (Eiten, 1972) (Fig. 2). Cerrado plants and other woody savanna plants are intolerant to waterlogging, as indicated by their low rates of biomass accumulation and also a higher number of dead plants when they have their roots exposed to flood (Joly and Crawford, 1982; Child et al., 2010). Hypoxic conditions in downslope due to high groundwater levels may be determinant in maintaining differences in water uptake along slope gradients (Désilets and Houle, 2005; Child et al., 2010). Nonetheless, some species such as Stryphnodendron adstringens, were found in all portions of the slope gradient, including on sites where groundwater is superficial (Table 1). The occurrence of this species in higher and lower slope positions indicates that it can successfully change its growth patterns and its water uptake in order to survive these contrasting conditions. In fact, it has been shown that some common tree species from cerrado (e.g. Tabebuia aurea) can survive and grow in flooded soil conditions by reducing shoot height and above-ground biomass, and having higher investment in superficial roots (Cabral et al., 2004).

4.3. The water uptake and vegetation structure

Water uptake patterns are strongly linked to vegetation structure. The clear relationship between frequency of water uptake on shallow soil and groundwater depth (Fig. 4) as well as the tight correlation between the frequency of water uptake on deep soil and all studied physiognomical parameters (Fig. 6A–D) demonstrates that in deeper soils, where the denser physiognomies predominated, a larger range of different strategies of water uptake occurred (e.g. use of water from different depths). This variability in water uptake patterns may be the result of a greater range in depth of soil water extraction by plants at higher elevation sites and could help to reduce inter-specific competition allowing coexistence of a larger number of different species in the same habitat (Leffler and Caldwell, 2005). At lower elevation sites, however, a more superficial groundwater associated with shallower soil profiles could strongly restrict root growth, affecting the potential range of water uptake strategies. These restrictive conditions would also tend to limit biomass accumulation, reflecting on the low values of diameter, basal area and plant height (Fig. 5).

The increase in soil volume to be explored by the roots, that results from deeper water tables, could also affect a multitude of factors, e.g. nutrient uptake or the anchorage of plants in the soil. In cases where depth of groundwater is not a prevailing factor to determine the vegetation structure along slope gradients, being very deep (>10–15 m), nutrient content and fire frequency may become prominent factors (Ruggiero et al., 2002; Oliveira-Filho et al., 1989). In some cases, geological distinctiveness in these topographic gradients may act as impediments for plant anchorage such as the presence of concretions (solid bedrock or laterite crusts) at different positions along the gradient, which may limit root penetration into deeper horizons (Sarmiento, 1983; Furley and Ratter, 1983; Haridasan, 2008).

In addition, fire can exert an important role on savanna vegetation structure and function by creating conditions that are favorable to a fast re-growth of savanna grasses, leading to great accumulation of grass fuel load for future fires (Hennenberg et al., 2006; Hoffmann et al., 2009), then decreasing abundance of woody plants (Moreira, 2000). This may be true especially in lower locations of the topographic gradient where grass diversity and biomass are higher (Scholz et al., 2008b). Thus, we expect that waterlogging and fire would be the most prominent factors that act in concert to maintain the observed changes in water uptake and vegetation structure along the topographic gradient, even though no natural barriers to fire passage were present.

5. Conclusions

Here we show that the ground water level affects plant water uptake patterns and soil water partitioning among woody species. Our results suggest that plants growing in areas with a deeper wet season unsaturated soil profile have greater variability in water uptake strategies, which in turn is coupled to a denser and more complex woody vegetation. Plant water uptake at lower elevations is limited by the presence of shallow groundwater and constrained to the shallower wet season unsaturated zone of the soil profile. The existence of sparser woody vegetation is related to the presence of species that only rely in superficial water uptake, or are plastic in relation to growth strategies. The findings reported here fill a gap in our understanding of the mechanisms of water use and vegetation structure within the cerrado region and allow comparisons between analogous types of savanna vegetation elsewhere.

Acknowledgments

We acknowledge CNPq (grants 141624/2009-4, 479279/2010-1 and 303637/2011-0, grant 141624/2009-4) and NSF for financial support. We thank Inésio Antonio Marinho Correa who assembled the vacuum line for water extraction from the samples.

References

Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.

Seasonal changes in water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology 29, 157–169.

New Millennium ripped of the old. Tree Plantation 11, 321–327.